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ATTACHMENT 1: Glossary

Beta Distribution is aflexible, bounded PDF described by two shape parameters. It iscommonly used when
arange of the random variable is known. (p. A3-14)

Boxplot isagraphical representation showing the center and spread of a distribution, along with a display of
outliers. (p. A3-10)

Central Limit Theorem saysthat for ardatively large sample size, the random variable x (the mean of the
samples) is normally distributed, regardless of the population’s distribution. (p. A3-14)

Coefficient of Variation (also Coefficient of Variance or Coefficient of Variability)” is an estimate of
relative standard deviation. Equals the standard deviation divided by the mean. Results can be represented in
percentages for comparison purposes. (p. A3-7)

Confidence Interval isthe range within which one has a given leve of confidence that the range includes the
true value of the unknown parameter (e.g. a 95% confidence interval for a parameter means that 95% of the
time the true value of that parameter will be within the interval).

Continuous Probability Distribution” is a probability distribution that describes a set of uninterrupted
values over arange. In contrast to the Discrete distribution, the Continuous distribution assumes there are an
infinite number of possible values.

Correlation, Correlation Analysis isan investigation of the measure of statistical association among
random variables based on samples. Widely used measures include the linear correlation coefficient (also
called the product-moment correlation coefficient or Pearson correlation coefficient), and such non-parametric
measures as Spearman rank-order corrélation coefficient, and Kendall'stau. When the data are nonlinear,
non-parametric correlation is generally considered to be more robust than linear correlation.

Correlation Coefficient” isanumber between -1 and 1 that specifies mathematically the degree of positive
or negative correlation between assumption cells. A correlation of 1 indicates a perfect positive correlation,
minus 1 indicates a perfect negative correlation, and 0 indicates there is no correlation.

Cumulative Distribution Function (CDF) is aternatively referred to in the literature as the distribution
function, cumulative frequency function, or the cumulative probability function. The cumulative distribution
function, F(X), expresses the probability the random variable X assumes a value less than or equal to some
value x, F(X)=Prob(X < x). For continuous random variables, the cumulative distribution function is
obtained from the probability density function by integration. In the case of discrete random variables, itis
obtained by summation.

Cumulative Frequency Distribution is a chart that shows the number or proportion (or percentage) of
values less than or equal to a given amount.
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Deterministic Model, as opposed to a stochastic model, is one which contains no random elements.
Discrete Probability Distribution” is a probability distribution that describes distinct values, usualy
integers, with no intermediate values. In contrast, the continuous distribution assumes there are an infinite
number of possible values.

Distribution isthe pattern of variation of arandom variable.

Frequency (also Frequency Count)” isthe number of times avaluerecursin agroup interval.

Frequency Distribution” is a chart that graphically summarizes alist of values by subdividing them into
groups and displaying their frequency counts.

Goodness-of-Fit is a set of mathematical tests performed to find the best fit between a standard probability
distribution and a data set.

Goodness-of-Fit Test isaformal way to verify that the chosen distribution is consistent with the sample
data.

Group Interval isasubrange of adistribution that allows similar values to be grouped together and given a
frequency count.

Histogram is aplot of the range of values of avariable into intervals and displays only the count of the
observationsthat fall into each interval. (p. A3-9)

Interquartile Range is the difference between the third quartile (75th percentile) and the first quartile (25th
percentile). (p. A3-10)

Kurtosis” isthe measure of the degree of peakedness and flatness of acurve. The higher the kurtosis, the
closer the points of the curve lie to the mode of the curve. A normal distribution curve has a kurtosis of 3. (p.
A3-7)

Lognormal Distribution isthe distribution of avariable whose logarithm is normally distributed. (p. A3-
15)

Mean is the arithmetic average of a set of numerical observations. the sum of the observations divided by the
number of observations (p. A3-7).

Measurement Error is error introduced through imperfections in measurement techniques or equipment.

Median is the value midway (in terms of order) between the smallest possible value and the largest possible
value. Itisthat value above which and below which half the population lies (p. A3-7).

Mode" isthat value which, if it exists, occurs most often in adata set. (p. A3-7)
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Monte Carlo Analysis (Monte Carlo Simulation) is a computer-based method of analysis developed in the
1940's that uses statistical sampling techniquesin obtaining a probabilistic approximation to the solution of a
mathematical equation or model. It isamethod of calculating the probability of an event using values,
randomly selected from sets of data repeating the process many times, and deriving the probability from the
distributions of the aggregated data.

Non-parametric Approach isonethat does not depend for its validity upon the data being drawn from a
specific distribution, such asthe normal or lognormal. A distribution-free technique.

Normal Distribution isa probability distribution for a set of variable data represented by a bell shaped
curve symmetrical about the mean. (p. A3-14)

Parameter. Two distinct, but often confusing, definitions for parameter are used. In thefirst usage
(preferred), parameters refers to the constants characterizing the probability density function or cumulative
distribution function of arandom variable. For example, if the random variable W is known to be normally
distributed with mean 1 and standard deviation o, the characterizing constants L and o are called parameters.
In the second usage, parameters are defined as the constants and independent variables which define a
mathematical equation or model. For example, in the equation Z=aX+pY, the independent variables (X,Y)
and the constants («,) are all parameters.

Parametric Approach isamethod of probabilistic analysisin which defined analytic probability
distributions are used to represent the random variables, and mathematical techniques (e.g., calculus) are used
to get the resultant distribution for afunction of these random variables.

Percentile isthe value that exceeds X percent of the observations.
Population isthetotal collection of observations that is of interest.
Probability (Classical Theory) isthe likelihood of an event.

Probabilistic Approach is an approach which uses a group of possible values for each variable to estimate
risk.

Probabilistic Model is a system whose output is a distribution of possible values.

Probability Density Function (PDF) isadistribution of values for arandom variable, each value having a
specific probability of occurrence. It isalternatively referred to in the literature as the probability function or
the frequency function. For continuous random variables, that is, the random variables which can assume any
value within some defined range (either finite or infinite), the probability density function of a point expresses
the praobability that the random variable falls within some very small interval; the PDF at a point multiplied
by the width of avery small interval containing the point approximates the probability that the random
variable fallswithin that interval. For discrete random variables, that is, random variables which can only
assume certain isolated or fixed values, the term probability mass function (PMF) is preferred over the term
probability density function. PMF expresses the probability that the random variable takes on a specific
value.
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Quantile-Quantile (Q-Q) Plot portrays the quantiles (percentiles divided by 100) of the sample data
against the quantiles of another data set or theoretical distribution (e.g., normal distribution). By comparing
the data to atheoretical distribution with a straight line, departures from the distribution are more easily
perceived. (p. A3-24)

Random Error iserror caused by making inferences from alimited database.

Random Number Generator” is amethod implemented in a computer program that is capable of producing
a series of independent, random numbers.

Random Variable is a quantity which can take on any number of values but whose exact value cannot be
known before a direct observation is made. For example, the outcome of the toss of a pair of diceisarandom
variable, asisthe height or weight of a person selected at random from the New Y ork City phone book.

Range” is the difference between the largest and smallest valuesin adata set. Alternatively, it expressesthe
interval between the minimum and maximum values (i.e., (min x;, max x;))

Regression Analysis (Simple) isthe derivation of an equation which can be used to estimate the unknown
value of one variable on the basis of the known value of the other variable.

Sampling. One of two sampling schemes are generally employed: simple random sampling or Latin
Hypercube sampling. Latin hypercube sampling may be viewed as a stratified sampling scheme designed to
ensure that the upper or lower ends of the distributions used in the analysis are well represented. Latin
hypercube sampling is considered to be more efficient than simple random sampling, that is, it requires fewer
simulations to produce the same level of precision. Latin hypercube sampling is generally recommended over
simple random sampling when the model is complex or when time and resource constraints are an issue.

Sensitivity Analysis isan analysisthat attempts to provide aranking of the modd'sinput parameters with
respect to their contribution to model output variability or uncertainty. In broader sense, sensitivity can refer
to how conclusions may change if models, data, or assessment assumptions are changed.

The difficulty of asensitivity analysisincreases when the underlying model is nonlinear, nonmonotonic or
when the input parameters range over several orders of magnitude.

Simple Random Sampling (SRS) is a sampling procedure by which each possible member of the population
isequally likdly to be the one selected.

Simulation, in the context of Monte Carlo analysis, is the process of approximating the output of a model
through repetitive random application of amodel.

Skewness is the measure of the degree of deviation of a curve from the norm of a symmetric distribution.
The greater the degree of skewness, the more points of acurve lie to one side of the peak of thecurve. a
normal distribution curve having no skewnessis symmetrical, that is to say that there exists acentral value a
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such that f(x-a)=f(a-X), f(x) being the frequency function. (p. A3-7)

Standard Deviation is ameasure of dispersion which is expressed in the same units as the measurements. It
isameasurement of the variability of adistribution, i.e., the dispersion of values around the mean. Standard
deviation is the square root of the variance for adistribution (p. A3-7).

Standard Error of the Mean isthe standard deviation of the distribution of possible sasmple means. This
statistic gives one indication of how precisethe simulation is.

Stochastic is aterm referring to a process involving arandom variable.

Triangular Distribution isadistribution with atriangular shape. It is characterized by its minimum,
maximum and mode (most likely) values. It is often used to represent atruncated log-normal or normal
distribution if there islittle information available on the parameter being modeled. (p. A3-14)

Variability refersto observed differences attributable to true heterogeneity or diversity in a population or
exposure parameter which cannot be reduced by additional data collection.

Sources of variahility are the result of natural random processes and stem from environmental, lifestyle, and
genetic differences among humans. Examples include human physiological variation (e.g., natural variation
in bodyweight, height, breathing rates, drinking water intake rates), weather variability, variation in soil types
and differencesin contaminant concentrations in the environment. Variability isusually not reducible by
further measurement or study (but can be better characterized).

Variance is ameasure of the dispersion, or spread, of a set of values about amean. Varianceisthe square of
the standard deviation, i.e., the average of the squares of the deviations of a number of observations from

their mean value. When values are close to the mean, the varianceis small. When values are widely scattered
about the mean, the varianceis larger.

* from Decisioneering manual (see bibliography)
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ATTACHMENT 2: Probabilistic Risk Assessments and Monte-
Carlo Methods: A Brief Introduction

Risk assessments are acrucial part of EPA’s pesticide regulatory program and have been for over 25 years.
These assessments are used to estimate impacts on human health and the environment from the use of agiven
pesticide. Agency policy isthat risk assessment should be conducted in atiered approach, proceeding from
simple to more complex analyses as the risk management situation requires. The Agency hastraditionally
used “deterministic” assessments involving point estimates of specific parametersto generate asingle
estimate of exposure and risk based on various assumptions about the concentration of pesticide in any given
medium (e.g., food, water, air etc) and the amount of that medium consumed, breathed, or otherwise
contacted. Deterministic assessments can begin with worst-case assumptions (for example, residues on foods
at tolerance levels), then can be refined by more redistic values that remain point estimates (for example,
average residues from field trials). Even with atiered approach, each deterministic assessment provides
single values for estimates of exposure from a given pathway. Such single-value risk estimates do not provide
information on the variability and uncertainty that may be associated with an estimate.

Current Agency Policy (5/15/97) isthat probabilistic analysis techniques (of which Monte-Carlo is one
example) can be viable statistical tools for analyzing variability and uncertainty in risk assessments, provided
they are supported by adequate data and credible assumptions. Probabilistic techniques can enhance risk
estimates by more fully incorporating available information concerning the range of possible values that an
input variable could take, and weight these values by their probability of occurrence. Asan example, a
particular food commodity (e.g., tomatoes) might contain arange of pesticide residues for any given
pesticide, with alarge percentage of tomatoes consumed actually containing no residues at al (since not all
tomatoes are treated). In addition, individuals may or may not consume tomatoes on any given day and, over
time, are expected to consume varying amounts of this food item due to varying daily consumption patterns.
Probabilistic risk analysis permits OPP to assess the range of exposures (and their associated probabilities)
which result from combinations of the various residue levels and consumption patterns.  The resulting output
of aprobahilistic determination is adistribution of risk values with probability assigned to each estimated
risk. Some of the major differences between deterministic and probabilistic estimates are summarized in the
table below:

Deterministic Risk Assessment Probabilistic Risk Assessment
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. Pesticide concentrations and potential . Takesinto account all available
exposure factors are expressed as point information and considers the probability
estimates. of an occurrence.

. Therisk estimateis also expressed aspoint | ¢ Therisk estimateis expressed as a
value. The variability and uncertainty of distribution of values, with a probability
this value are not reflected. gned to each value.

. The distribution reflects variability and
uncertainty.

Tiered Approach to Risk Assessment

Asrisk assessments are refined, assumptions can proceed from more conservative (more health protective) to
more realistic reflections of exposure. As noted above with the example of residues on food, such
refinements can be applied to deterministic assessments. Probabilistic analyses, including Monte Carlo,
represent numerical techniques to reflect more realistic assumptions. For example, Tier | of acute dietary
assessments as conducted by OPP includes conservative assumptions such as: all foods consumed by an
individual in any given day were treated with the pesticide in question (if registered for use on that food) and
that residues are present in those consumed foods at the maximum legal limit. Monte-Carlo techniques fully
applied to this situation would allow incorporation of information concerning the percent of the crop which is
treated, the amount of pesticide applied and timing of its application, and the range and distribution of residue
values expected to be found. Thisinformation is useful because a particular food (e.g., tomatoes) might
contain arange of pesticide residues for any given pesticide, with alarge percentage of tomatoes consumed
actually containing no residues at all (since not all tomatoes are treated). In addition, individuals may or may
not consume tomatoes on any given day and, over time, are expected to consume varying amounts of this
food item due to varying daily consumption patterns. Any variability and uncertainty is explicitly included in
the analysisand is fully disclosed.

The Origin of Monte-Carlo Techniques

Monte-Carlo techniques have been used since the 1940's when they were first devel oped by physicists
working on the Manhattan project. Only recently, however, have personal computers become sufficiently
powerful and widespread for Monte-Carlo techniques to be widely applied for health risk assessments.
Modern spreadsheet programs now provide arange of critical facilitiesto help to illustrate and order a model
including advanced statistical functions, charting, etc. And the simplicity and capabilities of recently
introduced commercial Monte-Carlo software allows these techniques to become virtually all but routine.

The origin of the name “Monte-Carlo” relates to the famous gambling city in Monaco, but the relation to
gambling applies only to the probability of a given event occurring over thelong term.  Although one cannot
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know precisaly which number will appear on the next roll of acraps die or the spin of a roulette whed, one
can predict over the long term (and as precisaly as desired) the frequencies associated with each outcome.
Monte-Carlo numerical techniques similarly cannot predict exactly which exposures will occur on any given
day to any specific individual, but can predict the range of potential exposuresin alarge population and each
exposure’ s associated probability.

What is Monte-Carlo Analysis?

Monte-Carlo analysisis simply one of several mathematical techniques for performing probabilistic risk
assessments. The Monte Carlo technique, as applied to exposure assessment, involves combining the results
of hundreds or thousands of random samplings of values from input probability distributionsin such a
manner as to produce an output distribution which reflects the expected range and frequency of exposures.
Although computationally-intensive, Monte-Carlo techniques themselves are not complicated. Assessing a
Monte-Carlo analysis requires examining the appropriateness of assumptions, judgements, and data sets
which are key inputs to the mathematical procedures.

Thefirst step in aMonte-Carlo simulation is the construction of a model that accurately represents the
problem at hand. The makeup of the model usually entails a mathematical combination (addition,
multiplication, logarithms, etc.) of the model input variables which can be expressed as probability
distributions. If, for example, one desires to simulate the daily dietary pesticide exposure to individuals from
aparticular pesticide in tomatoes, this can be simulated by repeatedly drawing random values from two
separate distributions. one distribution represents tomato consumption by individuals while the other
represents pesticide levelsin tomatoes. Here, the output variable (daily pesticide exposure) is defined asthe
product of the two input variables (tomato consumption in grams/day and pesticide residue concentrationsin
ug/g). Each random pair of input variables obtained from repeated independent samplings of the input
distribution are multiplied together and the product used as one point in the distribution for the output
variable. Ingeneral, thisprocessis repeated thousands of times and the thousands of output products
generated, taken together, form a distribution of frequencies. Thistechnique is more fully illustrated in the
box on the following page:
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Suppose that our two input variables are defined as A and B where A ={2, 4, 6, 8, 10}, B ={10, 20,
30, 40, 50}, and our output variable C is defined asthe product of A and B (i.e, C = A XxB). Set A
might represent the concentration of a pesticide in tomatoes (in ug/g) and Set B might represent the
daily consumption of tomatoes (in g/day). We wish to determine the range and frequency of potential
values of C (which in this case would represent daily exposure to the pesticide in ug/day) . Inspection of
the input dataimmediately revealsthat the value for C (daily exposure) can range from alow of 20
ug/day (i.e, 2x 10) toa
high of 500 ug/day (i.e., Forecast: A x B
10 x 50) and that each 10,000 Trials
of these two extreme '
values should occur
approximately 4% of
thetime(i.e, /5x 1/5

= 1/25 = 4%), Monte- es I 1 ) O O D O

Carlo methods permit ] i
usto evauate all values 03 oo L 343
that can be generated ] | | | i

for the value C aong 000 : : : : ; ; ; 0
with each of their 4 g
associated probabilities.
The Monte-Carlo
method randomly chooses a single pesticide concentration value from Set A and a single tomato
consumption value from Set B. These two values are multiplied together (to give daily pesticide
exposure, C) and thisresultant value stored. This processis repeated thousands of times with all
values of C eventualy plotted as a frequency histogram as shown above. Note that the lowest value is
20 ug/day and the highest value is 500 ug/day, just as originally predicted. Note also that these two
values each occur approximately 4% of the time, just as (again) predicted from our original inspection.
Although this example uses discrete values for sets A and B, Monte-Carlo modeling can a so be
performed when the input variable are described as continuous variables.

.125 - 1252

-- 938

Probability
e
Aauambaig

0.00 125.00 250.00 375.00 500.00

Regardless of how accurately the fitted distribution conformsto the data, or what method of sampling is
used, the analyst has to set up amodd that reflects the situation being assessed.  According to Vose's
Quantitative Risk Analysis: A Guide to Monte Carlo Simulation Modeling, the cardina rule of risk analysis
modeling is. “Every iteration of arisk analysis model must represent a scenario that could physically occur.”
Following this rule will lead to amodel that is both accurate and redlistic. Asan example, it would be
improper to model acow diet as arandom sampling of feeds with established tolerance for the pesticide of
interest since many of the diets generated in such a manner would be unreasonable with respect to the
roughage/nonroughage components, carbohydrate/protein mix, commodity combinations, and economic
congtraints. In short, blind application of Monte-Carlo techniques without regard for the reality of the
generated scenarios will produce absurd results with no basisin reality. The analyst should ensure that each
of the hundreds or thousands of iterationsis a scenario with real-world possihilities.

It is often tempting in risk analysis modeling to include very unlikely events that would have avery large
impact should they occur. A rare event of concernis defined as an event that has alow probability of
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occurrence but a potentially high impact on the results of a risk analysis. The expected impact of arare event
is determined by two factors: the probability that it will occur and the distribution of possible impacts. For
example, widespread systematic illegal use of a pesticide or gross calibration errorsin apesticide’ s
application might be a situation which occurs to some unknown (but relatively insignificant) extent. Since
the probabilities of these events are so difficult to quantify, their determination provides a stumbling block
for the analyst. However, sinceit is impossible to cover all scenarios that might exist and to calculate the
probability of such occurrence, including the rare event in the general model will not increase our
understanding of reality and will limit the clarity of the model.

Random Nature of the Monte Carlo Analysis.

Integral to any Monte-Carlo analysisis the generation of random numbers. Similar to rolling dice, the
software has a ‘ random number generator’ that produces arandom sequence of numbers. Two main forms of
sampling are Random Sampling (also called Monte Carlo Sampling) and Latin Hypercube sampling.
Random or Monte Carlo sampling will evaluate the probability distributions in a purely random fashion, and
isuseful in trying to get the model to imitate a random sampling from a population or for doing statistical
experiments. However, the randomness of this sampling suggests that, unless a very large number of
iterations are performed, it will over-sample some parts and under-sample other parts of the distributions.
Because for nearly all risk analysis modeling exploration of the distribution extremes (the “tails’) is
important, exact reproduction of the contributing distributions of the model becomes essential.

Latin Hypercube sampling (LHS) addresses thisissue by providing a sampling method that appears random
but that also guarantees to reproduce the input distribution with much greater efficiency that the random
sampling. LHS uses a technique known as stratified sampling without replacement. It breaks the probability
distribution into ‘n’ intervals of equal probability, where ‘n’ isthe number of iterationsto be performed on
themodel. Then, at random, one sample is drawn from each section, forcing, this way, an equal-chance
representation of all the portions of the distribution. The Latin Hypercube method leads to a predictable
uniformity of the sampling of the distribution.

For More Information
Use of Probahilistic Techniques (Including Monte Carlo Analysis) in Risk Assessment,
Memorandum from the Office of the Administrator, U.S. Environmental Protection Agency,

May 15, 1997

Policy for Use of Probabilistic Analysisin Risk Assessment at the U.S. Environmental Protection Agency.
U.S. EPA, Office of Research and Development, May 15, 1997.  (http://www.epa.gov/ncea/mcpolicy.htm)

Vose, David. Quantitative Risk Quantitative Risk Assessment: a Guide to Monte-Carlo Simulation
Modeling. John Wiley and Sons (1996)

ATTACHMENT 3: Distribution Selection
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Section | Introduction

EPA has recently established a policy and a series of guiding principles for the use of various probabilistic risk
assessment techniques. The policy states that probabilistic risk analysis techniques (including Monte-Carlo analyses)
can be viable statistical tools for analyzing variability and uncertainty in risk assessments provided that adequate
supporting data are available and credible assumptions are made. The policy goes on to state that when risk
assessments using probabilistic techniques are submitted to the Agency for review and evaluation, a number of
conditions must be satisfied: these conditions relate to the good scientific practices of transparency, reproducibility,
and the use of sound methods (memo from F. Hansen, 5/15/97). One of these specific conditions of acceptance states
that

The methods used for the analysis (including al models used, all data upon which the assessment is
based, and all assumptions that have a significant impact upon the results) are to be documented and
easly located in thereport. Thisdocumentation is to include a discussion of the degree to which the data
used are representative of the population under study. Also, this documentation isto include the names
of the models and software used to generate the analysis. Sufficient information is to be provided to alow
the results of the analysis to be independently reproduced.

The Agency simultaneously released a series of sixteen “Guiding Principles’ for the use of Monte-Carlo analysis and
an Appendix dealing with the selection of appropriate input probability distributions for these analyses. The intent of
the current document isto further develop these principles and guidelines for use by pesticide registrants and other
interested parties by defining what we in OPP's Health Effects Division (HED) see askey criteriawhich arisk
assessments using Monte-Carlo risk assessment techniques must adequately address. Specificaly, this chapter
exploresthe various plots, tests, techniques, and analyses which could be used to define an adequate probability
distribution for use as an input parameter for a Monte-Carlo assessment submitted to HED.

Monte-Carlo Modeling Options

Once the raw input data on the exposure variable of interest is collected, arisk assessor has available a number of
techniques for representing the exposure variables in aMonte Carlo analysis.

e anassessor can usethe datavaluesthemselvesdirectly in the ssimulation in what istermed a“trace-
driven” simulation. In thistechnique, values from the raw input data are repeatedly selected in arandom
manner and used to calculated model outputs; Thisisone form of an empirical distribution function
(EDF) inwhich the data values (and only the data values) themselves are used as modd inputs.

e an assessor can use the datato define a non-parametric empirical distribution function (EDF) where the
data values themselves are used to specify a cumulative distribution and the entire range of values
(including intermediate points) is used as model inputs. With this technique, any value between the
minimum and maximum observed values can be selected and mode! input is not limited to the specific
values present in the measured data.

e anassessor can attempt to fit atheoretical or parametric distribution (PDF) to the data using standard
statistical techniques and input parameters to the model can be selected from this fitted distribution.
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In evaluating whether an EDF or PDF should be used, the number of field trials, number of residue values, the
percent of crop treated, and the visual fit between atheoretical distribution and the actual data are important
considerations. A key consideration is the determination of how likely it is that we have captured (or adequately
estimated) the high end residues which are present in the population of treated and untreated commodities.

There are anumber of potentia benefits for making distributional assumptions about exposure data (du Toit et al,
1986; Law and Kelton, 1991). For example,

1) Distributional assumptions permit the data to be represented compactly. A data set containing a potentially
large amount of information can be summarized as a probability distribution model described by only afew
parameters. Empirical distributions require that each data point be represented and can result in a data set
that is cumbersome and difficult to useif the data set islarge.

2) Didtributional assumptions (and the exploratory data analysis which precedes them) may lead to aclearer
understanding of the underlying physical mechanisms involved in generating the data and vice-versa.

3) Digtributional assumptions permit datato be generated which are outside the range of historically observed
data. This can be useful since many measures of performance for simulated systems depend heavily on the
probability of an “extreme event” (i.e., one outside the range of the observed data) occurring. Empirical
distributions, which rely solely on past data when used in the usual manner, can tend to underestimate the
probability of an extreme event.

4) Distributional assumptions permit the datato be “smoothed out” which may more accurately reflect real-
world values. Empirical distributions, on the other hand, may contain certain artifactual irregularities,
particularly if only asmall number of datavalues are available.

On the other hand, some authors prefer EDFs (Bratley, Fox and Schrage, 1987) arguing that the smoothing which
necessarily takes place in the fitting process distorts real information. In addition, when data are limited, accurate
estimation of the upper end (tail) is difficult. Unfortunately for the assessor, there is no consensus as to which method
isbest. Ingeneral, the use of parametric (theoretical) distributions may be preferable to the use of empirical
distributions when the data are limited, the fit of the theoretical distribution to the datais good, and thereisa
theoretical or mechanistic basis which supports the chosen parametric distribution. The process of selecting
probability distributions and evaluating the goodness-of-fit is a process that requires judgement. Ultimately, the
technique selected will be a matter of the quality and quantity of the data under evaluation and the assessor’s exercise
of intelligence, creativity, and honesty in assessing the variability and uncertainties inherent in the risk assessment
problem.

Organization of Document

Section | of this document isthisintroduction to Monte-Carlo methods and a brief description of the advantages of
disadvantages of parametric methods (i.e., methods which make assumptions about underlying distributions to
develop theoretical distributions) and non-parametric methods (which utilize the data directly in forming an empirical
distribution, thereby making no assumptions about underlying distributions).

Section |1 of this document focuses on parametric methods for characterizing and quantifying stochastic variability.
In this section, it is explicitly assumed that the risk assessor has previousy made the judgement that the datain hand

A3-2




are of acceptable quality and are acceptably representative of the exposure variable of interest. The discussion in this
parallels the Guiding Principles section and Technical Appendix of the Agency’s policy for Monte Carlo Analysis,
expanding these e ements to provide more technical detail. The general outlinein Section Il follows that developed by
Law and Kelton (1991). It is organized around three fundamental activities:

()] selecting candidate theoretical distributions to determine which general families appear to be
appropriate to use on the basis of the shape, summary statistics, and simple distributional plots;

(m estimating the intrinsic parameters of the candidate distributions to define the specific
distribution; and

(1) assessing the quality of the resulting fit by examining how closaly they represent the true
underlying distributions for the data of interest and using various Goodness-of-Fit (GoF) tests.

Assessors have awide variety of commercially available distribution-fitting programs, spreadsheets, and dedicated
statistical packages to assist them in deciding whether or not their data can be adequately represented by atheoretical
distribution function. It is expected that most assessors will make use of one or more of these programsin fitting
exposure data. While these programs can save a tremendous amount of work, their use should never be reduced to a
simple mechanical exercise of importing the data, running the analysis and picking the “best fitting” distribution
returned by the program. Furthermore, despite their obvious utility, many of the commercial fitting-packages are
limited for fitting exposure data. For example, most fitting packages currently available cannot fit singly or multiply
censored data, truncated distributions, or distributional mixtures. For these data, the assessor will have to seek more
sdlective, powerful tools.

Many timesin Monte Carlo analyses, an empirical distribution function (EDF) is used to characterize a model
variableif the risk assessor has determined that the data themsel ves provides the best representation of the exposure
variable. In Section |11, we define an EDF and discuss the conditions under which the use of an EDF may be
preferableto aCDF. Severa approaches used to implement EDFs are also discussed.

Throughout Sections |1 and 111, each key ideawill beillustrated through a case study example.
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Section Il Parametric Methods

Parametric methods (as opposed to the non-parametric or empirical methods discussesin Section I11) rely ona
mathematical description of the distribution of values generated by aprocess. This section of the document describes
the three standard activities (selecting candidate distributions, estimation of parameters, and assessing goodness-of-
fit) used to describe the distribution and the adequacy of this description. The general outline follows that developed
by Law and Kelton (1991).

Activity | - Selecting Candidate Distributions

Activity | involvesthe use of prior knowledge and exploratory data analysis to make preliminary assessments of
which general families of distributions appear to best match the input data. This evaluation is performed on the basis
of the shape, summary statistics, and simple distributional and graphical plots of the input data and does not, at this
stage, involve the estimation of the specific statistical parameter values associated with each of these families.

Knowledge of the various properties and parameters associated with any of the various potential distributions can aid
in the selection of an appropriate distributional family. Figure 1 provides aflow chart which may be used as aguide
to selecting potential distributions for further analysis based on prior knowledge of distribution characteristics. Itis
not intended to be al-inclusive, but does cover arange of distributions which might be commonly seen in the area of
exposure and health risk assessment.

Make Use of Prior Knowledge

The choice of input distribution should always be based on all relevant information (both qualitative and quantitative)
available for a parameter. In selecting a distributional form, the risk assessor should consider the quality of the
information in the database and ask a series of broad questions which might include the following:

Is there any mechanistic basis for choosing a distributional family? Is the shape of the distribution likely
to be dictated by physical or biological properties or other mechanisms? Ideally, the selection of candidate
probability distributions should be based on consideration of the underlying physical processes or
mechanisms thought to be key in giving rise to the observed variability. For example, assume that a
persistent systemic pesticideis present in alettuce plant and is not degraded or metabolized. If, dueto
weekly variations in sunlight, rainfall, and nutrient availability, the mass of each lettuce leaf increases each
week by some random independent proportion of the mass achieved during the previous week, the
distribution of residues in these lettuce plants will be lognormally distributed (Ott, 1995); in this case, the
residue concentrations can be expressed as a random proportion of the quantity present in the immediately
prior state. |f each successive proportion isindependent of the one before and many weeks pass between the
initial and final states, the final residue concentration in the |ettuce plant can be expressed as a product of
random variables which givesrise naturally to alognormal distribution. In general, if an exposure variableis
the result of the product of alarge number of other random variables, it would make sense to select a
lognormal distribution for testing. As another example, the exponential distribution would be areasonable
candidate if the stochastic variable represents a process akin to inter-arrival times of events that occur at
independent constant rates.

Is the variable discrete or continuous? Can the variable only take on discrete values or is the variable

continuous over some range? A discrete variable may only take one of several specific values, whereas a
continuous variable may take on an infinite number of values. Examples of discrete variables would include
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whether the crop istreated or not (e.g., 0 or 1), the number of timesagiven pesticide is applied per season,
or the number of showers taken per week. Examples of continuous variable include the residue concentration
of agiven pesticide in atomato, the amount of pesticide a.i. applied per acre in a season, or drinking water
consumption rate.

Is the variable bounded or unbounded? If bounded, what are the bounds of the variable? What isthe
physical or plausible range of the variable? Isit semi-infinite (X>b)? Doesit take on only positive values
(X>0)?; Isit bounded by theinterval [a,b]? A properly-fitted distribution should cover the range of values
over which the modeled variable could theoretically extend. If afitted distribution extends beyond the range
of plausible values, then the model will produce implausible scenarios at the extreme tails of the distribution.
Conversdly, if afitted distribution fails to adequately extend to cover real-world limits, the resulting mode!
will not reflect the true nature of the potential variability.

Beta distributions are examples of bounded continuous distributions which might be considered for percent
foliar dislodgeable residue (%FDR) which could vary between 0% and 100%, for example. Unbounded
continuous distributions include the normal distribution: these distributions can sometimes be truncated, if
necessary, to represent variables which have natural or practical physical limits (e.g., body weight). Semi-
infinite continuous distributions (X>0) include the exponential distribution, the gamma distribution, the log-
normal distribution, and the Weibull distribution. These distributions are all bounded on one-side (sometimes
by 0) and extend to infinity and may describe variables which are censored due to limits of detection or some
aspect of the experimental design. It isimportant to note that a correctly fitted distribution can extend

beyond the range of observed data. Thisis expected since data are rarely observed at the theoretical extremes
for the variable in question.

Are historical data available? Is it known that a variable of interest has been found to consistently have a
certain distribution type in other data collection and distribution fitting research? Previous data may be
available for similar (or even identical) situations. For example, environmental concentrations of a
contaminant have sometimes to be found to be lognormally distributed. Time to complete certain tasks have
been shown to follow in some cases a Weibull distribution. Human body weights have been modeled asa
normal or log-normal distribution (Burmaster and Crouch, 1997). Consumption of water have been shown
in some instances to be adequately represented by alog-normal distribution (see, e.g., EPA’s Exposure
Factors Handbook, the AIHC's Exposure Factors Sourcebook), or Roseberry and Burmaster (1997). A
registrant should be aware of past modeling attempts to incorporate distributional information and may wish
to incorporate this into its own assessments.

Does the sample represent a single population, or is the sample drawn from a mixture of subpopulations?
Mixture models arise frequently in exposure and risk assessment. Discrete mixture distributions occur when
the population of interest consists of anumber of distinct subgroups, each with their own unique distribution.
For example, different agricultural occupational groups may have different exposure distributions as a result
of differing activities; produce grown in different regions of the country may have systematic differencesin
pesticide residue concentrations due to systematic differences acrossthe U.S. in rainfall and rainfall patterns,
soil types and conditions, and length of the growing season . Multi-modality provides afirst strong
suggestion that the observed sampleis drawn from a mixture of distributions and is therefore not
homogenous. As asecond step, statistical tests (e.g., the non-parametric Kruskal-Wallis test) are available for
ng the homogeneity of different data sets (e.g., Florida residue datavs. California residue data) and
determining whether the data sets can indeed be merged into the single residue distribution. Distinguishing
between these different subgroups can be important for both scientific evaluations of risk and evaluations of
different distributional issues. When these differences are recognized and the subgroups identified, the
overall distribution can be built up from the individual distributions of the various subgroups.
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Explore the Data

Exploring the data is an important step in the process of selecting plausible distributions. Exploratory data analysis
can be thought of as consisting of two steps: (1) characterizing the data through the use of summary statistics and
(2) graphical data analysis.

Summary Statistics. Summary statistics are useful for initialy characterizing or describing the data. Common
summary statistics fall into three basic groupings. (1) measures of central tendency or location, such asthe mean or
median; (2) measures of dispersion or spread, such as the variance; and (3) measures of shape or skewness.

Measures of central tendency are intended to indicate the “ center” of the data and commonly include the
mode, median, and mean. Other measures of |ocation include the geometric mean and trimmed mean (Helsdl
and Hirsh, 1992).

Measures of spread are intended to indicate how dispersed the data are relative to some central value or
specify the distance between selected observations. Common measures of spread include the range, inter-
percentile ranges (e.g., inter-quartile range), standard deviation, variance, and coefficient of variation.

Measures of shape are intended to provide insights to the symmetry or asymmetry in the distribution of the
data. The most frequently used measures of shape are skewness (asymmetry) and kurtosis (degree of
peakedness). In some cases, these summary statistics can be used to suggest one or more appropriate
distribution families for further testing as part of Activities Il and I1l. For symmetric continuous distributions
such as the normal, the mean and the median are equal. Thus, if the mean and median for any given data set
are approximately equal, one might consider further analysis of the data to test the hypothesis that the
distribution isnormal. For exponential distributions, the coefficient of variation (defined as the standard
deviation divided by the arithmetic mean, and sometimes expressed as a percent) is equal to 1 (or 100%).
Therefore, if the mean and standard deviation of any given data set are numerically similar, an exponential
distribution might be an appropriate distribution to hypothesize. Skewness and kurtosis values, considered
together, can be used to assist in distribution selection The skewness value is a measure of the symmetry of
the data, with perfectly symmetric distributions (like the normal) having a skewness value of zero. Right-
skewed distributions, like the right-skewed lognormal, have positive skewness values whereas left skewed
distributions have negative skewness values. Exponential distributions have a skewness value of 2. Thus, if a
set of data has a coefficient of variation of approximately 1 and a skewness of approximately 2, an
exponential distribution would be appropriate to consider. Many statistical and spreadsheet packages have
built-in features for automatically calculating many summary statistics. Simply inspecting these output
values can aid substantially in determining

candidate distributions for further analysis.
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Figure 1. Selecting Continuous Theoretical

Is the Model Parameter

Distributions

Unbounded?

YES

Is the Range of Model Parameter
Semi-infinite? (X > b)

NO

Bounded Continuous Distributions:
Truncated lognormal
Truncated normal
Beta
Triangular and log-triangular
Uniform and log-uniform

YES

Exponential
Gamma
Lognormal
Weibull

NO
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Box 1 lists data used as the case study throughout this section.
Thedatain thisBox represent a set of 25 hypothetical residue
valuesin tomatoes. Several summary statistics for these
residue data are shown in Box 2. A quick visual inspection of
the data can reveal anumber of important insights. Box 3
illustrates some of these insights for the sample tomato
pesticide data.

Graphical Data Analysis. The risk assessor can often gain
important insights by using a number of simple graphical
techniques to explore the data prior to numerical analysis. The
importance of this phase of visual inspection cannot be over-
emphasized. A wide variety of graphical methods have been
developed to aid in this exploration including frequency
histograms, stem and leaf plots, dot plots, line plots for
discrete distributions, box and whisker plots, and scatter plots
[Tukey (1977); du Toit et al. (1986); Morgan and Henrion,
(1990)]. These graphical methods are al intended to permit visual
inspection of the density function corresponding to the distribution of
thedata. They can assist the assessor in examining the data for
skewness, behavior in the tails, rounding biases, presence of multi-
modal behavior, and data outliers. Graphical methods, however, can
be highly midleading in the face of considerable uncertainty due to
small sample size or a high coefficient of variation.

A freguency histogram is agraphical estimate of the empirical
probability density function and can be compared to the fundamental
shapes associated with standard analytic distributions (e.g., normal,
lognormal, gamma, Weibull). Law and Kelton (1991) and Evans et
al. (1993) have prepared a useful set of figures which plot many of
the standard analytic distributions for arange of parameter values.
Frequency histograms can be plotted on both linear and logarithmic
scales and should be plotted to avoid too much jaggedness or too
much smoothing (i.e., too little or too much data aggregation). |If the
appearance of the histogram does not change much when varying the
bin width over areasonably wide range, then the data analyst can fedl
confident that any observed patterns are genuine. If, on the other
hand, the appearance changes in a fundamental way depending on the
sdlected bin width, any observed patterns at a specific bin width may
be an artifactual and should not be trusted. As a starting point, some
authors suggest that it may be useful to select the number of bins
accordingtok =1+ 3.322log ,, h wheren isthe number of data
points.

Line graphs apply to discrete random variables and are estimates of

BOX 1: Hypothetical Pesticide
Concentrations in Tomatoes (ppm)

110.5 204.3
147.5 148.3
111.6 66.9
139.0 53.6
72.9 68.5
109.8 108.0
94.8 97.6
68.8 78.2
142.3 68.2
70.8 80.3
74.6 267.7
169.7 170.0
143.7

BOX 2: Summary Statistics for Hypothetical
Pesticide Concentration in Tomatoes (ppm)

maximum 100.0% 267.70
99.5% 267.70

97.5% 267.70

90.0% 183.72

quartile 75.0% 145.60
median 50.0% 108.00
quartile 25.04% 71.86
10.08 67.68

2.5% 53.60

0.523 53.60

minimum 0.02 53.60
Mean 114.7056
Std Dev 51.2019
Std Error Mean 10.2404
Upper 95% Mean 135.8405
Lower 95% Mean 93.5707
N 25.0000
Sum Weights 25.0000
Sum 2867.6400
Variance 2621.6304
Skewness 1.2857
Kurtosis 1.8846
cv 44.6376

the probability mass function. In aline graph, the proportion of valuesin the sample data set equal to a particular
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discrete value are plotted and compared, on the basis of shape, to the probability mass functions for discrete
distributions (e.g., binomial, geometric, Poisson, negative binomial, etc.).

Box plots (Tukey box plots, box and whisker plots) can be avery
effective graphic display for summarizing the distribution of a
data set. Box plots provide easily explained and easily
comprehended visual summaries of:

the center of the data (median - the center line of the box)

the spread in the data (inter-quartile range - the box
length)

the skewness (quartile skew - the relative size of the box
halves)

the range (whiskers - lines from the ends of the box to
the maximum and minimum of the data or to some other
sdlected endpoint, e.g., the 5th and 95th percentiles, etc.)

There are three basic versions of the box plot: (1) the simple box
plot, (2) the standard box plot, and (3) the truncated box plot.

In the commonly-used standard box plot, the whiskers extend
only to the last data point within one step beyond either end of the

box. A step isdefined as 1.5 times the length of the box or approximately 1.5 timesthe inter-quartilerange. Data
points beyond 1.5 steps of either end of the box are plotted as individual points. When constructed in this manner, the
box plot provides arapid visua impression of the prominent features of the data. The median (or central line within
the box) shows the location of the center of the data. The spread of the central 50% of the data are represented by the
length of the box. And the length of the whiskers (relative to the box) show how stretched the tails of the distribution
are. Individua pointswhich extend beyond the whiskers are outside values which may be further investigated and
provide clues as to the distributional form. If the distribution is symmetric (e.g., as with anormal distribution), the
box will be divided into two equal halves by the median, the upper and low end whiskers will be the same length, and
the number of extreme data points will be distributed equally on either end of the plot  Two other kinds of box plots
(simple and truncated box plots) are more fully discussed by Helsel and Hirsh (1992).

Because of the variety of box plots available, the potential for confusion exists and all box plots submitted to HED

should be clearly |abeled as to which values are being represented.

Formal Tests for Normality and Lognormality

While examination of the summary statistics, frequency histograms, and box-and-whisker plots associated with a
data set are useful exercisesin exploratory data analysis, several procedures are available to formally test for
normality (or lognormality when log-transformed data are used) and can be used to confirm the assumption of
normality/lognormality. Such testsinclude Shapiro-Wilkstest (for sample sizes < 50), D'Agostino'stest (for
samplesizes 50), and Filliben's statistic (sample size >50), which is an extension of the Shapiro-Wilk test. The
Shapiro-Wilk and D'Agostino tests are the tests of choice when testing for normality (or lognormality) and are more
fully described in a number of standard texts. While the Shapiro Wilk test is one of the most powerful testsfor
normality, it is difficult to implement by hand asit involves calculating a correlation between the quantiles of the
standard normal distribution and the ordered values of the data set. It is, however, easily implemented as part of many
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BOX 3: Distributional and Statistical Insights into
Hypothetical Tomato Pesticide Data Set

A number of important insights on the data and its
distributional form can be gained by inspecting the
summary statistics commonly provided by standard
statistical packages. If the distribution is normal, for
example, the mean will be approximately equal to the
median. From the statistics provided in Box 2, we see that
the median of 108.0 islocated within the 95% confidence
interval of the mean (i.e.,, 93.6 t0 135.8). We also see
that the coefficient of variation of 0.446 (44.6%, as
indicated in the statistical output) islessthan 1, indicating
that a normal distribution might be appropriate to
hypothesize. Since the mean of 114.7 and standard
deviation of 51.2 are not equal, an exponential
distribution is unlikely to be appropriate. The skewness
value of 1 (as opposed to 2) further supportsthe
elimination of the exponential distribution asaviable
candidate for further consideration.




statistical software packages. These tests (and many more) are more fully discussed in the EPA publication Practical
Methods for Data Analysis (U.S. EPA, 1996). This EPA publication is available on-line and can be downloaded in
PDF format (see References and Suggested Readings for http:// address)

It isimportant to remember during this activity that itisless
critical for the analyst to be able to state with absolute certainty
that the data are distributed in the hypothesized manner (e.g.,
lognormally) than it is to determine that the hypothesized
distribution is“adequately representative’ of the data. The basic
guestion to be answered in the affirmative is whether the
empirical distribution of the dataiis sufficiently well-
approximated by the hypothesized distribution for the intended
purpose.

Knowledge of the various properties and parameters associated
with any of the various potential distributions can aid in the
selection of an appropriate distributional family. A list of
sdlected theoretical distributionsisincluded in Table 1 along
with abrief description of some of their potential uses. Aswith
Figure 1, it is not intended to be all-inclusive, but does cover a
range of distributions which might be commonly seen in the area
of exposure and health risk assessment.
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BOX 4: Frequency Distribution Histograms
for Hypothetical Pesticide Data

For a histogram of the pesticide residue data,
theinitial number of number of binsis
estimated ask =1 + 3.322log ,, (25) 6 The
figures below show histograms for the tomato
residue datafor 3, 6, and 9 bins. For these
data, 6 bins appear to strike areasonable

bal ance between too much smoothing for the 3
bin histograms and too much jaggedness
apparent for the 9 bin histogram.




BOX 5: Determination of the Appropriate Distributional Family for the Hypothetical Residue Data

Box 4 suggested that a normal distribution would be appropriate to hypothesize for the hypothetical pesticide data.
However, the box and whiskers plot of the actual data reveals a decidedly right-skewed distribution; in addition the Shapiro-
Wilk statistic of 0.88 (p<0.0063) also suggests that a normal distribution is not appropriate. Asindicated before (and
confirmed by the shape of the histogram and box-and-whisker plot), an exponential distribution is also inappropriate for
further consideration. Log-transformation of the hypothetical data produces a symmetric mound-shaped histogram and a
box-and-whisker plot showing characteristics of the normal distribution (eg., a box divided into two equal halves by the
median, whiskers of similar length, and an equal number of extreme data points on either end of the plot). The summary
statistics further suggest that alognormal distribution may be appropriate (mean  median and a skewness value
substantially closer to 0); the Shapiro-Wilk test (W = 0.951 with p = 0.27) confirms this as an appropriate distribution for
further consideration and analysis as part of Activity I1.

Having determined that the log-normal distribution is the distribution most appropriate for further analysis, the two
subsequent activities are determining the most appropriate distribution (Activity 1) and performing tests to verify that the
selected distribution and its parameters adequately fit the empirical data.
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Distribution Type

Table 1 Selected Theoretical Distributions?

Distribution Description

Discrete
Bernoulli

binomial

discrete uniform

geometric

The Bernoulli distribution is used to model random events when there are only two possible
outcomes (e.g., success or failure, treatment or no treatment) and is used to generate other
discrete random variables (e.g., binomial, geometric, and negative binomial). A Bernoulli
random variable can be thought of as the outcome of an experiment that either “fails’ or
“succeeds’ and isfully characterized by its parameter p, representing the probability of an
event occurring.

The binomial distribution models the number of successesin n independent Bernoulli trials,
with the with probability p of successin each trial. It isproduced by processesthat (1) can
produce only one or the other of two outcomes and (2) are carried out a finite number of
trids. Itisfully characterized by the parametersn, p, and x representing the number of
trias, the probability of successin each trial, and the number of successes, respectively.

The discrete uniform distribution models random occurrences when there are several
possible outcomes, each outcome with the same probability of occurrence. Thisistypically
used asa“first” model for a quantity that is varying among integers, but about which littleis
known.

The geometric distribution models the number of failures before the first successinn
independent Bernoulli trials, each trial with an identical probability of success. It isadirect
analogue of the exponential model except islimited to integers.

Bounded Continuous
beta

triangular, log-triangular

uniform, log-uniform

The beta distribution is a very flexible distribution capable of exhibiting awide variety of
shapes. It is often used to model bounded data, to model distributions for proportions or
fractions, or to model time to complete some task. It can also be used as a rough model in
the absence of data (see Law and Kelton, 1991). Two parameters sufficeto describe this
distribution (o, o))

The triangular distribution is often used a rough model in the absence of data when the
vaues toward the middle of arange of possible values are more likely to occur than values
near either extreme. There is no mechanistic basis for this model which istypically used to
represent subjective uncertainties. If the range covers several orders of magnitude, the log-
triangular distribution is sometimes used.  The minimum, maximum, and most likely value
suffice to describe this distribution.

The uniform distribution is often used in the absence of data as a crude model when the
quantity is known to randomly vary between known limits but where little else isknown. Its
use is appropriate when we are able to identify arange of possible values, but are unable to
determine which values within the range are more likely to occur than others. The minimum
and maximum values suffice to describe this distribution. If the limits cover several orders
of magnitude, the log-uniform is sometimes used.
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Unbounded Continuous
normal

The normal distribution models phenomena that are the result of the sum of many other
random variables (by the Central Limit Theorem). In other words, if alarge number of
variables are added together (such that no one variable contributes a substantial amount to
total variation), the result will take the shape of anormal distribution. These frequently
involve small measurement errors of various types and any process whose fina outcomeis
the result of many independently determined sums. The mean and standard deviation suffice
to describe this distribution. The skewness of the normal distribution is O (it is symmetric)
and the kurtosisis 3.

As negative quantities can be generated with the normal distribution, thisisin some cases
theoretically inappropriate. However, aslong as the coefficient of variation of lessthan ca.
0.2, generation of negative values is sufficiently improbable so as not to be of concern since
the probability of generation of values more than five standard deviations from the mean is
quite small.
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Non-negative Continuous
exponential

gamma

lognormal

Weibull

When events are purely random, the times between successive events are described by an
exponential distribution. The exponential distribution isfrequently used to describe the
time between events for Poisson processes (i.e., processes for which the probability of an
event per unit time interval is constant and independent of the number and timing of events
which occurred in the past) or the fraction of individuals (or anything else) remaining in a
system at various times after the start of an exponentia decline. The mode of exponential
distribution is zero and the probability of occurrence continually decreases with increased
values. The skewness of an exponential distribution istwo. This distribution complements
the Poisson distribution which characterizes the number of occurrences per unit timeand is
aspecial case of the gammaand Weibull distributions.  The exponential is lesstail-heavy
than the lognormal and extreme values therefore have alower probability. Itis
characterized by a single parameter (), representing the mean time between events.

The gammadistribution iswidely used in environmental analysis to characterize pollutant
concentrations as well as used in meteorological processes to characterize precipitation. It is
also commonly used to represent the time to complete some task. Thetail of the gamma
distribution is not as tail-heavy (long) as the lognormal and it therefore ascribes a lower
probability to extreme values than does the lognormal distribution. The gammaistypically
describe by two parameters, a shape parameter and a scale parameter.  When the shape
parameter is 1, the distribution is equivalent to the exponential distribution.

The lognormal distribution models quantities that are the product of alarge number of other
quantities (i.e., if one wereto multiply alarge number of random variables together, the
result will tend toward alognormal distribution). This distribution results when the
logarithm of arandom variable is described by anormal distribution. Itiswidely usedin
environmental analysisto represent positively valued data exhibiting positive skewness.
Examples include concentrations of chemicalsin environmental media and amounts of those
media which are consumed, efficiencies of absorption, and rates of elimination of toxicants.
The lognormal distribution has a heavier (longer) tail than the exponential, gamma or
Weibull distributions.  There are three common ways to parameterize alognormal
distribution: (1) arithmetic mean and standard deviation of the log-transformed variables;
(2) geometric mean and standard deviation of the non-transformed variables; and (3)
arithmetic mean and standard deviation of the non-transformed variables.

The Weibull distribution iswidely used in life data analysis, time to complete some task,
and time to equipment failure. The Weibull distribution is lesstail heavy than the lognormal
and thus ascribes alower probability to extreme events. It istypically described by two
parameters, a scale parameter and a shape parameter. Aswith the gamma distribution, the
distribution is equivalent to the exponential distribution when the shape parameter is 1,

The aboveinformation was obtained mainly from Hattis and Burmaster (1994), Vose (1996), Law and Kelton (1995), and Morgan and Henrion

(1990)

MNote: Digributiond plots, probability and cumulative density functions, interpretation of distributional parameters, formulae for important statistical
terms (e.g., mean, standard devidion, etc.) are available from the literature (e.g., see Law and Kelton (1995), Vose (1996) and Evans et d. (1993))
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Activity Il - Estimation of Parameters

Once a candidate distribution family is selected (e.g., alognormal distribution), we estimate the parameters of the
candidate family in order to have a completely specified distribution for usein the simulation. Parameter estimation is
generally accomplished using conventional statistical methods, the most popular of which include the method of
maximum likelihood, probability plotting methods, and the method of moments. See Law and Kelton (1991), Evans
et al. (1993), Gilbert (1987), and Vose (1996).

Parameter Estimation Methods

Maximum Likelihood Method. Probably the most often-used method for estimating the parameters of a distribution
isthe method of maximum likelihood. For some distribution families (e.g., normal, exponential, geometric),
maximum likelihood estimators (MLEs) are well-defined values resulting from a straightforward algebraic
calculation, but for others solving the equations is computationally intensive and special software is required.

There are a number of references which derive the MLE for several common distributions (e.g, Vose (1996), Ott
(1995) Evanset. al. (1993)). For the purposes of this document we will simply state that the MLE for the mean and
standard deviation of anormally distributed population are simply the mean and standard deviation, respectively, of
the observed sample data. For the exponential distribution, the MLE for the single parameter of the exponential
distribution is the mean of the observed sample data. For the geometric distribution, the MLE for the p parameter is
1(x +1).

Probability Plotting Methods. Probability plotting methods, sometimes called linear |east square regression
methods or regression on order statistics, are based on finding probability and data scales so that the theoretical
cumulative distribution function plots as astraight line. The transformed data is then plotted against the linearized
CDF and ordinary linear regression is performed to estimate the parameters of the fitted distribution. This method is
applicable to theoretical distributions whose CDFs are expressible as a function of one or two parameters, for
example, the exponential, normal, lognormal, and Weibull distributions. The following are instructions for linearizing
the CDF and estimating the parameters of the fitted distribution:

For adistribution which has been hypothesized to be normal

Construct anormal probability plot with z(p) on the abscissa (the “x” axis) vs. each x , value on the ordinate
(the“y” axis)®. If the normal probability plot isastraight or near-straight line, thisis evidence that the
distribution is normal and the data are well-modeled by anormal curve. Using ordinary least-squares
regression, calculate the slope of the fitted line and itsintercept. Theintercept is an estimate of the arithmetic
mean of the distribution while the dlope is an estimate of the arithmetic standard deviation of the distribution.
These values should be compared with (and comparable to) the values calculated using ML method

! Specialized statistical software is available to create normal probability plots. Alternatively, one
can create these plots using certain spreadsheet software. For example, to create anormal probability plot
using Excel or Quattro Pro, first rank the observations(r , r,, I, ... ) in ascending order (from lowest to
highest) and assign each observation arank (e.g, lowest observation receives arank of 1, the next recelvesa
rank of two, all the way to the Nth observation which receives arank of N). For each observation, the
cumulative rank is then calculated using a plotting position formula (e.g., the Weibull plotting position
formular , /n+1). Thiscan be considered similar to a percentile value except percentile values range to
100%. Next, the normal quantile is calculated for each cumulative rank: the normal quantileisthe z-score
associated with each percentile and can be determined using Excel's NORMSINV function. Finally, each
observation’s normal quantile (or z-score) is plotted on the x-axis against each observation on the y-axis.
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described above.

For a distribution which has been hypothesized to be lognormal

Calculate the natural logarithms of each of the x ,, valuesfor n=1to N. Construct anormal probability plot
with z(p) on the abscissa (the “x” axis) vs. each In[x ] value on the ordinate (the “y” axis) as described in
the previous footnote (except than In[x ] is substituted for [x ]). If thelognormal probability plotisa
straight or near-straight line, thisis evidence that the distribution is lognormally distributed and the data are
well-modeled by alognormal distribution. Using ordinary least-squares regression, calculate the slope of the
fitted line and itsintercept. The intercept is an estimate of the mean of the natural logarithms of the
distribution (i ) while the dope is an estimate of the standard deviation of the logarithms (o ). These values
should approximate the values for the mean and standard deviation, respectively, calculated by the following
formulae:

— Y In[x]
o Inlx] N

N 1

\' Y (nix] T

To calculate the arithmetic mean and standard deviations from these regression values (i.e., to define the
distribution inits original terms), the following formulae are used:

[ %o g/

n e

o ely(e° 2)(e0 ’ 1)

For a distribution which has been hypothesized to be exponential

First, calculate the cumulative frequency by ranking the observations from lowest to highest as described in
the previous footnote. Then, for each ranked observation subtract this quantity from 1 and take the natural
logarithm of this difference. Plot this value on the y-axis vs. each individual data point on the x-axis. If the
plot isreasonably straight, thisis evidence that the distribution is exponentially distributed. Using ordinary
least-squares regression, calculate the slope of the fitted line fixing the y-intercept of the regression line at the
point (0, 1). The calculated dope of thislineisthe B parameter appearing in the exponential model [f(x) = 1
- e ] and should be compared with (and comparable to) the value calculated from the ML method for
exponential distributions described above.

For a distribution which has been hypothesized to be Weibull
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The two characteristic parameters of aWeibull distribution (i.e., the scale and shape parameters) can most
easily be determined by either using dedicated statistical distribution fitting software or by plotting the data
on speciaized commercially-available Weibull probability paper (e.g., see Craver (1996)) . Inthelatter
case, the Weibull scale and shape parameters can be read directly from the probability plot. For aWeibull
curve (with alocation parameter of 0), the scale parameter istypically represented by the 63.2 %-ile.

Weibull plots can also provide information about other potential distribution families. For example, the Sope
of the plotted points provide additional information about the distribution family or class with slopes of 1, 3,
and 5 evidence of exponential, lognormal, and normal distributions, respectively.

For a distribution which has been hypothesized to be Beta

As with the Weibull distribution, characteristic parameters of a beta distribution can most easily be
determined by either using dedicated statistical distribution fitting software or by plotting the data on
specialized commercially-available beta probability paper.

For a distribution which has been hypothesized to be Gamma

Aswith the Weibull and beta distributions, gamma parameters can most easily be estimated by using
commercially-available software or gamma probability paper.

An example of these methods using the hypothetical pesticide datais shown in Box 6.
Method of Matching Moments.
The method of moments replaces each uncertain variable by its mean and variance and uses probability laws to
estimate the mean and variance of the models outcome. However, the method of moments has some fairly severe
limitations. For example ( Vose, 1996),

e itassumesthat al variablesin the moddl are independent

» it assumesthat the outcomeis approximately normally distributed

» itassumeseither that all variablesin the model are approximately normally distributed or that the model has a
very large number of uncertain variables, none of which dominates the outcome; and

» it cannot easily cope with divisions, exponents, power functions, discrete variables, etc.
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BOX 6: Determination of the Appropriate Parameters for the Hypothesized Lognormal Distribution
of the Pesticide Data

Having determined that alog-normal distribution is the most appropriate distribution for further analysis of
the hypothetical tomato residue data, the analyst should next determine the appropriate parameters which
define the distribution (i.e., the mean and standard deviation). A normal probability plot of the log-
transformed values reveals a straight line with aslope of 0.4447 and an intercept of 4.65789. Thisintercept
isan estimate of the mean of the log-transformed values (i.e., it isthe ') and the dlope is an estimate of the
standard deviation of the log-transformed values (it is the ¢")
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These values are comparable to the mean and standard deviation calculated as follows:

5 R % 46575

> (nlx]  TADx)?

0.4122
A N 1

Calculating the arithmetic mean and standard deviation from the regression valuesin order to define the
distribution inits original terms:

M 207
e 2 116.33

o et He° 1) 5516

Thus, the most appropriate distribution to hypothesize for the hypothetical tomato pesticide residue datais a
lognormal distribution with these parameters.
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Activity 111 - Assessing Goodness of Fit

Activity 111 involves determining how well our selected (and now fully-defined) candidate distributionisin
representing the true underlying distribution for our data. Having estimated the parameters of the candidate
distributions, it is necessary to evaluate the "quality of the fit" and, if more than one candidate distribution was
selected, to select the "best” distribution from among the candidates. A goodness of fit test (GoF test) is a statistical
test in which the null hypothesis (H ,) is that the observed data are characteristic of arandom variable with the
hypothesized distribution function (e.g, exponential with a3 parameter of 0.8). Unfortunately, thereisno single,
unambiguous measure of what congtitutes best fit. Ultimately, the risk assessor must judge whether or not thefit is
acceptable. This judgement should be based on a consideration of goodness-of-fit statistics as well as graphical
comparisons of the fitted and empirical distributions, paying special attention to issues relevant to the analysis, e..g,
fit in the lower or upper tails (but note that this is where the confidence intervals are widest). It isaso important to
consider the processes that generated the data and to look for probabilistic distribution models that arise from similar
processes.  Used in conjunction with the probability plots and statistical measures used in Activity |, GoF tests can,
however, be powerful tools for verifying that a chosen distribution is at |east reasonable.

Goodness-of-Fit Tests

Goodness-of -fit tests are formal statistical tests of the hypothesis that the set of sampled observations are an
independent sample from the known or assumed distribution. The null hypothesis, H ,, isthat the randomly sampled
set of observations are independent, identically distributed random samples from a population with the hypothesized
distribution. The GoF tests indicate whether the hypothesized distribution can be reasonably rejected as improbable.
It isimportant to recognize that failureto rgject H , is not the same as accepting H , astrue These tests, taken alone,
are not very powerful for small to moderate sample sizes (i.e., subtle but systematic disagreements between the data
and the hypothesized distribution may not be detected); conversely, the tests can be too sensitive for large humbers of
data points -- that is, for data sets with alarge number of points, H , will amost aways be rejected.

Commonly used goodness-of-fit tests include the chi-square test, Kolmogorov-Smirnov test, and Anderson-Darling
test. These are described further below.

Chi-Square Test. The chi-squaretest is based on the normalized difference between the square of the observed and
expected frequencies and can be viewed as a comparison of the frequency histogram with the fitted probability density
function or probability mass function. The chi-square test statistic is computed by dividing the entire range of the
fitted distribution into k contiguous, non-overlapping intervals and counting the number of data samplesfalling into
eachinterval (N;). Thiscount is compared to the expected number of observationsin abin. Given asamplesizeof n,
the expected number of data pointsin thejth bin (j = 1tok) isnp ; wherep; = F(x;) - F(x;_,) .The chi-square test
statistic is computed as

2 2“: (observed  expected)? 2“: (N, np)
i expected i1 np;

The chi-square test is highly dependent on the width and number of intervals chosen. Law and Kelton recommend
selecting equi-probable bin widths such that np;  5; D’ Agostino and Stephens (1986) recommend selecting k equi-
probable intervals where k = 2n 2° For example, if one had 100 data points, one might wish to form k = 13
(equiprobability) intervals. If 13 equiprobability intervals are formed for the 100 data points, then the expected
number of pointsin eachinterval (i.e., thenp;) would be calculated as follows:
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This satisifies the criteria that each bin size be chosen such that an equal number of points (in this case, 8) numbering
at least five be expected in each bin. The size of each bin width is calculated by inverting the cumulative distribution
function?. Thisisbest illustrated by returning to our pesticide example as shown in Box 7.

Kolmogorov-Smirnov Test. The Kolmogorov-Smirnov Test is a non-parametric test based on the maximum

absol ute difference between the theoretical and sample (or step-wise empirical) Cumulative Distribution Functions
(CDFs). Large values of this statistic indicate a poor fit while small valuesindicate agood fit. Critical valuesfor the
K-S dtatistic depend on whether or not the parameters of the distribution are known a priori or have to be estimated
fromthe data. See Law and Kelton (1992) and D’ Agostino and Stephens (1986).

The Kolmogorov-Smirnov test is most sensitive around the median and less sensitive in the tails and is best at
detecting shiftsin the empirical CDF relative to the known CDF. Itisless proficient at detecting spread but is
considered to be more powerful than the chi-square test.

Anderson-Darling Test. The Anderson-Darling test is designed to test goodness-of-fit in the tails of a probability
density function based on a weighted-average of the squared difference between the observed and expected cumulative
densities. Additional information and critical values for Anderson-Darling statistic for the all parameters known

case, and for the normal , exponential, and Weibull distributions are given by Law and Kelton (1992)and D’ Agostino
and Stephens (1986). Because of its relative emphasis on fit in the tails, the Anderson-Darling statistic may be
particularly useful to assessors as a goodness-of -fit statistic.

2 While these inverses can be calculated algebraically for functions with closed forms such as the
exponential, use of a spreadsheet program or numerical methods may be necessary for continuous functions
such as the normal, lognormal, gamma, and beta distributions. Excel® and QuatroPro® have built-in inverse
functions which are called NORMSINV, LOGINV, GAMMAINYV, and BETAINV, respectively, which
return the val ue associated with any given probability. In our hypothetical pesticide example (see Box 7), the
given probability isequal to 1/j for j =k downto 1, withk =5 (i.e., 1/j = 0.2 for the first bin width, 0.4 for
the second bin width, 0.6 for the third width, 0.8 for the fourth, and 1.0 for the last).
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BOX 7: Equiprobability Chi-Square Test of Sample Pesticide Data

For our pesticide example, we have atotal of 25 data points and desire to select k equi-probable intervals. We
sdlect k avalue of 5: although the formulawould yield for k avalue of 7 (k = 2(25%%)=7), we require a minimum
of 5 data points per bin and thus for 25 points, 5 bins (or equiprobability intervals) are necessary. If 5
equiprobability intervals are formed for the 25 data points, then the expected number of pointsin each interval
(i.e, thenp;) is5 (or n x 1/k = 25 x (1/5)). With 5 bins (or intervals), the given probability is equal to 1/j for j =
k downto1withk =5. Thatis, 1/j = 0.2 for the first bin width, 0.4 for the second bin width, 0.6 for the third bin
width, 0.8 for the fourth, and 1.0 for the last. Theindividual bin widths are calculated using Excel’s LOGINV
function with the assumed mean and standard deviation calculated in Activity Il. The individual bin widths,
observed number of pointsin each bin, the expected number of pointsin each bin, and the calculated Chi-square
values are shown below:

.Calculation of Chi-Square Vaue for Pesticide Example Using a Lognormal (116.3,
55.2) Hypothesized Distribution

J Interval® No. No. Expected” Chi-Square®
Observed

Lo Hi

1 0 72.46 6 5 0.2

2 72.46 94.14 4 5 0.2

3 94.14 117.94 6 5 0.2

4 117.94 153.2 5 5 0

5 153.2. 4 5 0.2
TOTAL 25 25 0.8

# Intervals are calculated by evaluating the inverse of the hypothesized distribution at
each j vaue. Inthisexample, the hypothesized distribution islognormal with an
arithmetic mean of 116.3 and an arithmetic standard deviation of 55.2. Since this
distribution has no closed form, the upper end of each of the 5 intervals must be
evaluated with Excel (or QuatroPro) using the LOGNORMINYV function with amean
(of thelogs) of 4.657489 and a standard deviation (of the logs) of 0.444947 (each of
which were calculated previoudly in Box 6).

® The number expected in each bin was calculated previously as nx 1/k

¢ Each chi-square valueis calcul ated as (observed-expected)? / expected. The final
chi-square value is caculated as the sum of these individual chi-squared values

The degrees of freedomisgiven by v =k - m -1 wherek is the number of bins (or classes) and m isthe number
of parameters we are estimating from the data (i.e., the mean and standard deviation). Fromthis, v =5-2-1=2.
The y 2 critica value for p = 0.1 and 2 degrees of freedom is calculated as 2 (0.9;2) = 4.6. Since our observed
x % value of 0.8<4.6, , we are unableto reject the lognormal model with an arithmetic mean of 116.3 and an
arithmetic standard deviation of 55.2 on the basis of this chi-squared test of fit: the Chi-square value suggests
that there is no reason to conclude that our data are poorly fitted by our hypothesized lognormal distribution.

Cautions Regarding Goodness-of-Fit Tests
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Care must be taken not to over-interpret or over-rely on the findings of goodness-of-fit tests. It isfar too tempting to
use the power and speed of computers to run goodness-of-fit tests against a generous list of candidate distributions,
pick the distribution with the "best" goodness-of-fit statistic, and claim that the distribution that fit "best" was not
rejected at some specific level of significance. This practiceis statistically incorrect and should be avoided [Bratley et
al., 1987, page 134]. Asindicated previously, Goodness-of-fit tests have notoriously low power and are generally
best for regjecting poor distribution fits rather than for identifying good fits. For small to medium sample sizes,
goodness-of-fit tests are not very sensitive to small (but potentially significant) differences between the observed and
fitted distributions. On the other hand, for large data sets, even minute differences between the observed and fitted
distributions may lead to rejection of the null hypothesis. For small to medium sample sizes, goodness-of-fit tests
should best be viewed as a systematic approach to detecting gross differences.

We note that there is absolutely no substitution for careful visual inspection of both the data and the theoretical
distribution of thefit to the data. The human eye and brain are able to interpret and understand data anomalies far
beyond the ahility of any computer program or GoF tests. GOF tests may, at best, smply serve to confirm what the
analyst has found though visual inspection. One may quite appropriately decideto retain aparticular probability
model despite having rejected it on the basis of GoF testsiif it appears to be a good fit to the data as judged by the
visual inspection of the probability plots and other comparisons.

Graphical (Heuristic) Methods for Assessing Fit

Graphical methods provide visual comparisons between the experimental data and the fitted distribution. Despite the
fact that they are non-quantitative, graphical methods often can be most persuasive in supporting the selection of a
particular distribution or in rejecting the fit of adistribution if one has a sufficiently large samplesize. This
persuasive power derives from the inherent weaknesses in numerical goodness-of-fit tests. Commonly used graphical
methods for ng goodness of fit include:

Frequency comparisons compare a histogram of the experimental data with the density function of the fitted
data. Frequency comparisons must be interpreted with care since the visual comparison will depend on the
number of bins used to generate the histogram of the data. Two examples of a frequency comparison are shown
below for our sample pesticide data. The leftmost illustration compares the untransformed pesticide data to the
normal curve while theillustration to the right compares the log-normalized pesticide residue data to the normal
curve
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Box plot comparisons compare a box plot of the observed datawith abox plot of the fitted distribution. Thisis
illustrated below for the sample pesticide residue data (observed) and the lognormal distribution (fitted).

Observed data

— K

‘ ‘ Fitted Distribution

Probability-Probability plots (P-P plots) compare the observed cumulative density function (i.e., the sample
probability) with the fitted cumulative density function (i.e., the model probability). P-P plots are used to graphically
evaluate how well the data fit a given (hypothesized) theoretical distribution, e.g. normal, lognormal, Weibull, etc.
P-P plots tend to emphasize differences in the middle of the predicted and observed cumulative distributions, and are
less sensitive than Q-Q plotsto differencesin the tails (where risk assessors are more frequently interested).

Theoretical Quantile-quantile plots (Q-Q plots) graph the quantiles of the specific fitted (or theorized) distribution
against the quantiles of the actual data. To construct atheoretical Q-Q plot, one sorts the data in ascending order and
calculates a cumulative frequency (as done for the normal probability plot) using the standard plotting formula(i.e., r
/N + 1). At this point, the z value associated with this probability (or cumulative frequency) value is calculated and
transformed to its original scale. In other words the quantile value associated with this cumulative probability from
the theoretical distribution is calculated. This can be done with Excel or QuantroPro using their inverse cumulative
probability functions (e.g., NORMINV, LOGINV, or GAMMAINV) or can sometimes be done analytically using an
algebraic formulafor distributions for which there is a closed form for the cumulative probability function (e.g., the
exponential and Weibull distributions). ® Finally, the actual data values are plotted against the values which would
have been seen if the data were distributed according to the hypothesized distribution.

Thetheoretical Q-Q plot is used to determine how well the data set is modeled by the theorized distribution: any
systematic deviations in the distribution of our sample data from the hypothesized distribution are highlighted and
(idedlly at least) will be readily apparent. If the graph islinear (and there are no significant systematic deviations
from linearity), thisis evidence in support of the datafitting the specific hypothesized distribution. Q-Q plotstend to
emphasize differences in the tails of the fitted and observed cumulative distributions. The deviation of a Q-Q plot
from astraight line can provide diagnostic information about the theorized distribution. For example, if the datain the
upper tail fall above the quartile line and those in the lower tail fall below it, there are too few datain the tailsthan
would be expected in the theoretical distribution (and the theorized distribution is said to be too heavy in the tails).
Conversdly, if the datain the upper tail fall below the quartile line and those in the lower tail fall above it, then there
are more data pointsin the tails than would be expected in the theorized distribution (and the theorized distributionis
said to betoo light in the tails). Patternsin deviations from linearity can be investigated by use of aresiduals plot to
detect systematic departures.

3 Thetheoretical Q-Q plot for the normal (and log-transformed lognormal) distributions are
essentially equivalent (except for scaling) to the normal probability plot discussed earlier and constructing Q-
Q plotsfor the normal and lognormal distributions would therefore be of little additional value.
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Section 111 Non-Parametric Distribution Functions

Many times in Monte Carlo analyses, a non-parametric function (or empirical distribution function (EDF)) is used to
characterize amodel variable. In these situations, the risk assessor has determined that the data itself providesthe
best representation of the exposure variable. Simply put, the risk assessor has chosen to directly use the sample
values to define the distribution of the exposure variable rather than represent it by atheoretical distribution fit to the
data.

D’ Agostino and Stephens (p.8-9,1986) discuss the advantages of EDFs. Some of the benefits of likely interest to risk
assessors include:

1. EDFs provide complete representation of the data without any loss of information.
2. EDFs do not depend on any assumptions associated with parametric models.
3. For large samples, EDFs converge to the true distribution for all values of x.

4. EDFs provide direct information on the shape of the underlying distribution, e.g., skewness and
bimodality; EDFs supply robust information on location and dispersion.

5. An EDF can be an effective indicator of peculiarities (e.g., outliers)

6. An EDF does not involve grouping difficulties and loss of information associated with the use of
histograms

7. Confidence intervals are easily calculated.
8. EDFs can be effectively used for censored samples.

D’ Agostino and Stephens also point out one of the potentially serous drawbacksto EDFs. EDFs can be sensitive to
random occurrences in the data and sole reliance on them can lead to spurious conclusions. This can be
especially true if the sample size small. In addition, we note that empirical distributions (as traditionally used) do not
permit data to be generated which are outside the range of historically observed data and EDFs therefore tend to
underestimate the probability of an extreme event.

The choice of whether or not to use an EDF in an
assessment employing Monte Carlo methodsis
ultimately up to the risk assessor and his/her level of
comfort and confidence with the data and the method.
It must be remembered that EDFs (when used in the
usual manner) rely solely on past observations and
therefore preclude generation of data outside the
historically-observed range. Monte-Carlo results
generated from an EDF may produce tails that are too
short and can therefore underestimate the probability
of extreme events.
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Below, we discuss how an EDF is defined and present several approaches used to implement EDFs.

Discrete Representation of EDFs

Given arandom sample of n observations, X,, X,, -, X,,, & discrete representation of this EDF would be
represented as X = {X,, X,, -, X,,}. These values could be used themselves directly in the simulation in what is
termed a“trace-driven” simulation. In thistechnique, values from the raw input data are repeatedly selected in a
random manner and used to calculated model outputs. For example, given the dataset X =
{1,1,3,4,7,9,12,12,16,17} , adiscrete representation of this data set isillustrated below:

Frequency Chart
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We note that with this representation no intermediate values (e.g., 2, 5, 6, 8, etc) can be generated and the simulation
is limited to only those values which have historically been observed and are present in the data input set.

Continuous Representation of EDFs
Given arandom sample of n observations, X;, X,, -+, X,,, sorted from smallest to largest, from atrue but unknown
distribution, an empirical distribution function, EDF, expressed on a cumulative basis may be defined as

prob (X < x ) F(x ) number oLx S < X

For example, given the samedataset X ={1,1,3,4,7,9,12,12,16,17} , the probability that X < 11isgiven by F(11) =
6/10 = 0.60 since there are 6 samples with values less than or equal to 11 and there are ten samplesin the entire data
set. Thisformulation of the EDF presents some problems since all values of x™ intherange 9 < x” < 11 have the same
probability (called constant interpolation), i.e., prob (X < 10) = 6/10, prob (X < 10.5) = 6/10, prob (X < 11.5) =
6/10, and so on. Defined thisway, the EDF is a step function with abrupt jumps at the sample values asillustrated
bel ow:
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The EDF isthen expressed as
0 x < x[1]
k
F.(x) r X[k 1] < x < x[K] fork 1,2, ,n

=

X > x[n]

where X[ 0] is set to zero. As with the discrete representation, values below the sample minimum and beyond the

sample maximum cannot be generated. However, unlike the discrete representation, any value between the maximum
and minimum can be generated.

Linear Interpolation of Continuous EDFs. It may be unsettling to define the EDF as a step function with
abrupt jumps at certain values and so interpolation is often used to estimate the probabilities of valuesin between
samplevaues. Generally , for values between observations, i.e., X, ; < X <X,, linear interpolation is used, although
higher order interpolation is sometimes used. The EDF for linear interpolation between sample valuesis smply

X < X[1]

X = X[K]

() N (K X[k-1])

x[k-1] < x < x[k]  for k 1,2, n

=1 F o)

=

X > x[n]
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Extended EDF. Thelinearly interpolated EDF cannot produce values beyond the values in the data sample.
This may be an unreasonable restriction in many cases. For example, the probability that a previously observed
largest value in a sample based on n observations will be exceeded in asample of N future observations may be
estimated using the relationship prob =1 - n/(N + n). If the next sample size isthe same as the original sample size,
there isa 50% likelihood that the new sample will have alargest value greater than the original sample' s largest value.
Restricting the EDF to the smallest and largest sample values may produce distributional tailsthat are too short.

In order to get around this problem, one may extend the EDF to include plausible minimum and maximum values.
The extended EDF expands the linearly interpolated EDF by including a user-defined absolute minimum, x,;,, and
absolute maximum, X,,,., which are beyond the data sample.

0 x < x[0]

k X = X[K]

Fa(X) n 1 (n 1) (x[K] - x[k-1])

xk-1] < x < x[K| for k 12, n 1
1 x > x[n 1]

where x[0] = X, and X[N+1] = X, q-
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ATTACHMENT 4: Memorandum entitled “Final Office Policy for Performing Acute Dietary Exposure Assessment”,
D. Edwards, June 13, 1996

June 13, 1996

MEMORANDUM

SUBJECT:  Fina Office Policy for Performing Acute Dietary Exposure Assessment.

FROM: DebraEdwards, Ph.D., Acting Deputy Director
Health Effects Division (7509C)
Office of Pesticide Programs

TO: CBTS, CBRS, DRES, and RCAB Staff

Enclosed is a copy of the final policy which describes how OPP currently performs acute dietary risk
assessment (Tiers| and I1). The policy dso outlines proposed future refinements to our current policy (Tiers

Il and 1V). The policy has been reviewed by the SAP in September, 1995.

Attachment

cc. Stephanie Irene
Penelope Fenner-Crisp
Lois Ross
Steve Johnson
Anne Lindsay
Bill Jordan
Richard Schmitt
HED Branch Chiefs
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ACUTE DIETARY EXPOSURE ASSESSMENT
Office Policy
June 1996

Purpose

The purpose of this guidance document is to outline how OPP performs acute dietary exposure assessments.
This document is for internal use and reflects current policy, reviewed by the SAP in September 1995.

Background

OPP intends to use atiered gpproach to determine acute dietary exposure associated with pesticide use. The
gepsin the analysis proceed from more to less conservative assumptions. The tiered approach is considered
the most efficient means of exposure assessment both for the Agency and Industry, matching the level of
Agency and Industry resources used to the level of risk concern. For Tiers 1 and 2, no additional data will
be required of the registrant; the registrant will be required to mitigate any unacceptable risk from Tier 3
anadyses and, at their own option, may generate additional single serving size* (Tier 4) residue data. Analysis
proceeds only to the step at which no risk concern isindicated. Selection of an MOE that triggers concern
istied to the nature of the adverse effect under consideration. Both individual and population risk will be
considered in regulatory decision-making.

Currently, the Agency performsonly Tier 1 and 2 acute exposure assessments.  The future addition of Monte
Carlo® analysis capability will allow the use of Tier 3 and 4 acute exposure assessments.

4 "dingleserving size" - individual pieces of acommodity for which one discrete piece constitutes a
serving (such as asingle apple or single banana)

°> A Monte Carlo analysis creates ajoint distribution of two variables, in the case of DRES, by
randomly pairing a distribution of residue chemistry data with a distribution of food consumption data, to
create arepresentation of the actual exposure distribution.
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Tiered Acute Exposure Assessment Overview

Tier 1, usng asingle high end residue estimate and a distribution of consumption data, is inexpensive and
the least resource intensive but gives only an upper bound (worst-case) estimate of acute exposure.

Tier 2, the same as Tier 1, except using a single average residue data point for commodities which are
typically mixed, requires minimally more effort than Tier 1, but provides a more redlistic estimation of
exposure by considering average anticipated residues for food forms that are typically mixed prior to
consumption.

Tier 3, using a distribution of residue data points as well as a distribution of consumption data points,
requires additional Agency review time, but provides amore realistic estimation of acute exposure than
Tier 2.

Tier 4, using a distribution of residue data points from single serving size samples, is the only method
which requires additional residue data from the registrant. It requires additional and expensive residue
data, extensive Residue Chemistry and DRES review time, but provides the most representative exposure
picture. However, it may not provide alower exposure estimate than Tier 3.

Procedure

Tier 1 uses a single high end residue estimate (usualy the tolerance) together with a distribution of
consumption values to estimate single-day exposure. This tier assumes the following:

- All commodities which have a tolerance for a pesticide contain tolerance level pesticide residues (or
the highest residue found in afield tria).

- If resdue datafor the edible portion are reported in the field trials, the residue estimate for the edible
portion is taken from the highest residue found in field trials conducted at the maximum use pattern
on the label.

- The tolerance, or maximum legal level of a pesticide in or on a human food or animal feed
commodity, is derived from the field trial composite sample® exhibiting the highest residue.

- 100% of the crop is assumed to be treated.

- Tolerances/residue estimates for "all raw agricultural commodities’ in food handling establishments
will be excluded from the analysis.

6 Composite samples are numerous pieces of acommodity which are blended together prior to analysis

(such as 12 large potatoes or 24 lemons). Composite samples are collected in field trials because FDA
monitoring for tolerance enforcement is done using composite samples, and the primary purpose of a
toleranceis as an enforcement tool. Guidelines on the minimum sample sizes are outlined in the Codex
"Guidelines on Minimum Sample Sizes for Agricultural Commodities from Supervised Field Trialsfor
Residue Analysis', ALINORM 87/24A (1987).
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- Currently the exposure to consumers’ only is calculated; non-consumers are excluded from the
analysis.

Tier 2 isthe same as Method 1 for commodities which are commonly consumed as a "single serving size',
or cannot be assumed to be mixed during processing; e.g., apples, oranges, pears, bananas, potatoes. For
food forms that are typically mixed prior to consumption [grains (e.g. rice) and grain products, oils,
sugars, most juices, tomato products (paste, puree, and juice), dried potatoes, soybeans, peanuts, mint
ails, milk, wine, and sherry], an average anticipated residue from field trial data or 95™ percentile residue
from monitoring data is combined as above with a distribution of consumption data to estimate exposure.

- Thehigh end resdue for commodities consumed as a"sngle serving Sze" is determined the same way
asitwasin Tier 1.

- Theresdue estimate for raw agricultural commodity food forms that are typically mixed (e.g., rice,
dry beans) is determined by averaging the residue data from field trials conducted at the maximum
use pattern on the label. Alternatively, the 95" percentile residue from monitoring data may be used.

- Theresidue estimate for food forms (processed foods) that are typically mixed is determined by using
the average residue found in field trials conducted at the maximum use pattern multiplied by the
average processing factor determined in processing studies. Alternatively, the 95" percentile residue
from monitoring data may be used. For processed food forms that may be derived from a limited
geographic region (individual farm, county), the highest average field trial (HAFT) should be used.

- Incdculating the average residue, if the residue level of the pesticide fals below the estimated limit
of detection (LOD) of the method, the limit of detection will be assigned. If the residue level of the
pesticide falls between the estimated limit of detection of the method and the limit of quantitation
(LOQ) of the method (point at which quantitative results may be obtained with a specified degree of
confidence), the residue will be estimated to be the LOQ.

Tier 3 combines the entire distribution of residues from field trials (composite samples) with the entire
distribution of consumption data to estimate a distribution of exposure (convolution of distributions using
the Monte Carlo method). Tier 3 allows the following:

- A didribution of residue data pointsisincluded for all possible commodities, which is more redlistic
than a single point estimate.

- If resdue datafor the edible portion are reported in the field trials, the distribution of residues from
fidd trials conducted at the maximum use pattern on the label is used. If residue data on the edible
portion are not available, the residue data points for the raw commodity may al be multiplied by the

” Anindividua on agiven day is defined as a"consumer" if he consumed one or more of the foods for

which aprior tolerance exists for a pesticide. For example, if only 1000 out of the 90,000 consumption data
records include consumption of strawberries, then only those records would be used in the analysis. Thiswas
originally done to be protective of people actually consuming the commodities of concern.
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average processing factor to determine the distribution of residues for the edible portion of the raw
commodity.

- For commodities which are typically mixed, in general, a point estimate will be used i.e. the average
residue from field trials, multiplied by the average processing factor or the 95" percentile residue from
monitoring data. Asin Tier 2, the HAFT should be used for processed food forms that can be
derived from a limited geographic region. However, distributions of residues will be used when it
is necessary to further refine the analysis.

- Percent crop treated data are included in the equation, by assgning a probability that the residue level
could be zero. However, consideration must be given to the possibility of regional outliers, where
ahigher percent of the crop is treated and marketed primarily within that region. Imported crops are
assumed to be 100% treated unless better data are available.

- The total population is included in the assessment (consumers and non-consumers). This allows
population exposure comparisons between andyses for different commodities and different pesticides.

- Asdata become available on variability inherent in composite sampling, monitoring data may be used
in acute dietary exposure anaysis for al foods.

Tier 4 (optional) combines the entire distribution of residues from a well designed, statistically valid
market-basket survey (single serving-size samples, i.e., not composited), with the entire distribution of
consumptions to estimate the distribution of risks (also Monte Carlo method).

- Theentire distribution of residue data points from the specially conducted market basket survey is
used as residue estimates for commodities consumed as single servings.  Single serving size samples
are collected in these special surveys. The edible portion of the commodity is analyzed.
Alternatively, the estimates for the whole commaodity may be modified by multiplying by processing
factors to determine the edible portion of the commodity.

- Individual serving size samples, e.g., individua apples, and a corresponding composite sample
collected from the identical sampling site both should be analyzed. The concurrent analyses of
individua units/serving portions and the corresponding composite may provide a basis on which later,
independent monitoring data using composite sampling may be used by the Agency to assess acute
dietary exposure. Additional guidance on the conduct of specia surveysfor Tier 4 will be provided
as needed for each study.

Procedures for DRES portion of Acute Exposure Analysis

- Current DRES acute andysis uses the individud person-day data from a survey of food consumption,
in which approximately 30,000 people were surveyed for 3 days each, approximately 90,000 person-
day records. Each record contains information on the consumption of the 376 "raw agricultural
commodities’ (RACs) which make up the standard list of RACs in the DRES system. Data are
recorded as grams of RAC eaten per kilogram of bodyweight on that day. If a person did not
consume a particular RAC, the RAC isgiven a"missing value" in the database.
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Acute analyses use the person-day consumption data in the fundamental formula: Exposure =
Residue x Consumption

E =R x C x0.001
where
E = exposure from the pesticide on RAC'I', in milligrams
pesticide/kilogram bodyweight/day,
R = the chemical residue on RAC'I', in mg pesticide/kg RAC,
and
C = the consumption of RAC'l', in g RAC/kg bodyweight/day.
0.001 = conversion from grams food to kilograms food

In acute analyses, exposure is summed across all RACs for each person, and the distribution of
exposures across the population is plotted on a histogram or table. The statistical weights assigned
to each individua in the survey are taken into account.

Acute exposure is expressed as a margin of exposure (MOE). The MOE is calculated using the
eguation,

MOE = _NOEL = NOEL
exposure residue x consumption

The magnitude of risk is generally estimated by comparing the exposure value to the highest dose
level known not to cause effects (NOEL or other appropriate endpoint). Subgroups are of concern
in acute analyses.

Selection of an MOE that triggers a risk concern should be tied to the nature of the adverse effect
under consideration and the type of study from which the NOEL is taken. Effects that are reversible
may be regulated less stringently than those which are irreversible and life threatening. Dose-
Response information is also a consideration.

The acute DRES analysis does not take into account food handling establishments. We believe that
the underlying assumption, that all commodities that are consumed on any given day will contain
tolerance level residues of pesticides from a food handling establishment, is unrealistic. Residues
resulting from pesticide use in food handling establishments are not likely to result in incidental
contamination of al foods at tolerance levels on a uniform and consistent basis and not all foods
consumed by an individua in aday are likely to have come from a food handling establishment.

Future acute DRES andyses will reflect the total population and not consumers only. The population
of "consumers' will be different for every analysis and the comparison of different chemicalsis not
appropriate with the present procedure. The inclusion of the total population in future analyses will
permit comparison between commodities for any given pesticide, and also permit anaysis of
alternatives by comparing the risk picture between pesticides.
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Percent crop treated data will be included in Monte Carlo analyses in the form of 'zero' residue data
points in the appropriate proportion, when field trial data are used. This will result in exposure
estimates more nearly reflecting the actual exposure.

Resduesin water should be included in the DRES andysis, by including the MCL or monitoring data,

as available. However, regiona variations in exposure must be considered when characterizing
population risks.
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